hodge
function (K, n = dovs(K), g, lose = TRUE)
{
if (missing(g)) {
g <- rep(1, n)
}
if (is.empty(K)) {
if (missing(n)) {
stop("'K' is zero but no value of 'n' is supplied")
}
else {
return(kform(spray(matrix(1, 0, n - arity(K)), 1)))
}
}
else if (is.volume(K, n)) {
return(scalar(coeffs(K), lose = lose))
}
else if (is.scalar(K)) {
if (missing(n)) {
stop("'K' is scalar but no value of 'n' is supplied")
}
else {
return(volume(n) * coeffs(K))
}
}
stopifnot(n >= dovs(K))
f1 <- function(o) {
seq_len(n)[!seq_len(n) %in% o]
}
f2 <- function(x) {
permutations::sgn(permutations::as.word(x))
}
f3 <- function(v) {
prod(g[v])
}
iK <- index(K)
jj <- apply(iK, 1, f1)
if (is.matrix(jj)) {
newindex <- t(jj)
}
else {
newindex <- as.matrix(jj)
}
x_coeffs <- elements(coeffs(K))
x_metric <- apply(iK, 1, f3)
x_sign <- apply(cbind(iK, newindex), 1, f2)
as.kform(newindex, x_metric * x_coeffs * x_sign)
}
To cite the stokes
package in publications, please use
Hankin (2022). Given a k-form \beta, function hodge()
returns
its Hodge dual \star\beta. Formally, if
V={\mathbb R}^n, and \Lambda^k(V) is the space of alternating
linear maps from V^k to {\mathbb R}, then \star\colon\Lambda^k(V)\longrightarrow\Lambda^{n-k}(V).
To define the Hodge dual, we need an inner product \left\langle\cdot,\cdot\right\rangle
[function kinner()
in the package] and, given this and
\beta\in\Lambda^k(V) we define \star\beta to be the (unique) n-k-form satisfying the fundamental
relation:
\alpha\wedge\left(\star\beta\right)=\left\langle\alpha,\beta\right\rangle\omega,
for every \alpha\in\Lambda^k(V). Here \omega=e_1\wedge e_2\wedge\cdots\wedge e_n is the unit n-vector of \Lambda^n(V). Taking determinants of this relation shows the following. If we use multi-index notation so e_I=e_{i_1}\wedge\cdots\wedge e_{i_k} with I=\left\lbrace i_1,\cdots,i_k\right\rbrace, then
\star e_I=(-1)^{\sigma(I)}e_J
where J=\left\lbrace
j_i,\ldots,j_k\right\rbrace=[n]\setminus\left\lbrace
i_1,\ldots,i_k\right\rbrace is the complement of I, and (-1)^{\sigma(I)} is the sign of the
permutation \sigma(I)=i_1\cdots
i_kj_1\cdots j_{n-k}. We extend to the whole of \Lambda^k(V) using linearity. Package idiom
for calculating the Hodge dual is straightforward, being simply
hodge()
.
We start by demonstrating hodge()
on basis elements of
\Lambda^k(V). Recall that if \left\lbrace
e_1,\ldots,e_n\right\rbrace is a basis of vector space V=\mathbb{R}^n, then \left\lbrace\omega_1,\ldots,\omega_k\right\rbrace
is a basis of \Lambda^1(V), where \omega_i(e_j)=\delta_{ij}. A basis of \Lambda^k(V) is given by the set
\bigcup_{1\leqslant i_1 < \cdots < i_k\leqslant n} \bigwedge_{j=1}^k\omega_{i_j} = \left\lbrace \left.\omega_{i_1}\wedge\cdots\wedge\omega_{i_k} \right|1\leqslant i_1 < \cdots < i_k\leqslant n \right\rbrace.
This means that basis elements are things like \omega_2\wedge\omega_6\wedge\omega_7. If V=\mathbb{R}^9, what is \star\omega_2\wedge\omega_6\wedge\omega_7?
## An alternating linear map from V^3 to R with V=R^7:
## val
## 2 6 7 = 1
hodge(a,9)
## An alternating linear map from V^6 to R with V=R^9:
## val
## 1 3 4 5 8 9 = -1
See how \star a has index entries
1-9 except 2,6,7 (from a). The (numerical) sign is negative because
the permutation has negative (permutational) sign. We can verify this
using the permutations
package:
p <- c(2,6,7, 1,3,4,5,8,9)
(pw <- as.word(p))
## [1] (1264)(375)
## [coerced from word form]
print_word(pw)
## 1 2 3 4 5 6 7 8 9
## [1] 2 6 7 1 3 4 5 . .
sgn(pw)
## [1] -1
Above we see the sign of the permutation is negative. More succinct idiom would be
## An alternating linear map from V^6 to R with V=R^9:
## val
## 1 3 4 5 8 9 = -1
The second argument to hodge()
is needed if the largest
index i_k of the first argument is less
than n; the default value is indeed
n. In the example above, this is 7:
## An alternating linear map from V^4 to R with V=R^5:
## val
## 1 3 4 5 = -1
Above we see the result if V=\mathbb{R}^7.
The hodge operator is linear and it is interesting to verify this.
(o <- rform())
## An alternating linear map from V^3 to R with V=R^7:
## val
## 2 6 7 = 6
## 2 5 7 = 5
## 5 6 7 = -9
## 1 3 7 = 4
## 1 5 7 = 7
## 2 3 5 = -3
## 1 5 6 = -8
## 1 2 7 = 2
## 1 4 6 = 1
hodge(o)
## An alternating linear map from V^4 to R with V=R^7:
## val
## 2 3 5 7 = -1
## 3 4 5 6 = 2
## 2 3 4 7 = -8
## 1 4 6 7 = -3
## 2 3 4 6 = -7
## 2 4 5 6 = -4
## 1 2 3 4 = -9
## 1 3 4 6 = 5
## 1 3 4 5 = -6
We verify that the fundamental relation holds by direct inspection:
o ^ hodge(o)
## An alternating linear map from V^7 to R with V=R^7:
## val
## 1 2 3 4 5 6 7 = 285
## An alternating linear map from V^7 to R with V=R^7:
## val
## 1 2 3 4 5 6 7 = 285
showing agreement (above, we use function volume()
in
lieu of calculating the permutation’s sign explicitly. See the
volume
vignette for more details). We may work more
formally by defining a function that returns TRUE
if the
left and right hand sides match
and call it with random k-forms:
## [1] TRUE
Or even
## [1] TRUE
We can work in three dimensions in which case we have three linearly
independent 1-forms: dx, dy, and
dz. To work in this system it is better
to use dx
print method:
## An alternating linear map from V^2 to R with V=R^3:
## + dy^dz
This is further discussed in the dovs
vignette.
The three dimensional vector cross product \mathbf{u}\times\mathbf{v}=\det\begin{pmatrix} i & j & k \\ u_1&u_2&u_3\\ v_1&v_2&v_3 \end{pmatrix} is a standard part of elementary vector calculus. In the package the idiom is as follows:
vcp3
## function (u, v)
## {
## hodge(as.1form(u)^as.1form(v))
## }
revealing the formal definition of cross product as \mathbf{u}\times\mathbf{v}=\star{\left(\mathbf{u}\wedge\mathbf{v}\right)}. There are several elementary identities that are satisfied by the cross product:
\begin{aligned} \mathbf{u}\times(\mathbf{v}\times\mathbf{w}) &= \mathbf{v}(\mathbf{w}\cdot\mathbf{u})-\mathbf{w}(\mathbf{u}\cdot\mathbf{v})\\ (\mathbf{u}\times\mathbf{v})\times\mathbf{w} &= \mathbf{v}(\mathbf{w}\cdot\mathbf{u})-\mathbf{u}(\mathbf{v}\cdot\mathbf{w})\\ (\mathbf{u}\times\mathbf{v})\times(\mathbf{u}\times\mathbf{w}) &= (\mathbf{u}\cdot(\mathbf{v}\times\mathbf{w}))\mathbf{u} \\ (\mathbf{u}\times\mathbf{v})\cdot(\mathbf{w}\times\mathbf{x}) &= (\mathbf{u}\cdot\mathbf{w})(\mathbf{v}\cdot\mathbf{x}) - (\mathbf{u}\cdot\mathbf{x})(\mathbf{v}\cdot\mathbf{w}) \end{aligned}
We may verify all four together:
u <- c(1,4,2)
v <- c(2,1,5)
w <- c(1,-3,2)
x <- c(-6,5,7)
c(
hodge(as.1form(u) ^ vcp3(v,w)) == as.1form(v*sum(w*u) - w*sum(u*v)),
hodge(vcp3(u,v) ^ as.1form(w)) == as.1form(v*sum(w*u) - u*sum(v*w)),
as.1form(as.function(vcp3(v,w))(u)*u) == hodge(vcp3(u,v) ^ vcp3(u,w)) ,
hodge(hodge(vcp3(u,v)) ^ vcp3(w,x)) == sum(u*w)*sum(v*x) - sum(u*x)*sum(v*w)
)
## [1] TRUE TRUE TRUE TRUE
Above, note the use of the hodge operator to define triple vector cross products. For example we have \mathbf{u}\times\left(\mathbf{v}\times\mathbf{w}\right)= \star\left(\mathbf{u}\wedge\star\left(\mathbf{v}\wedge\mathbf{w}\right)\right).
The inner product \left\langle\alpha,\beta\right\rangle above may be generalized by defining it on decomposable vectors \alpha=\alpha_1\wedge\cdots\wedge\alpha_k and \beta=\beta_1\wedge\cdots\wedge\beta_k as
\left\langle\alpha,\beta\right\rangle= \det\left(\left\langle\alpha_i,\beta_j\right\rangle_{i,j}\right)
where \left\langle\alpha_i,\beta_j\right\rangle=\pm\delta_{ij}
is an inner product on \Lambda^1(V)
[the inner product is given by kinner()
]. The resulting
Hodge star operator is implemented in the package and one can specify
the metric. For example, if we consider the Minkowski metric this would
be -1,1,1,1.
The standard print method is not particularly suitable for working with the Minkowski metric:
options(kform_symbolic_print = NULL) # default print method
(o <- kform_general(4,2,1:6))
## An alternating linear map from V^2 to R with V=R^4:
## val
## 3 4 = 6
## 2 4 = 5
## 1 4 = 4
## 2 3 = 3
## 1 3 = 2
## 1 2 = 1
Above we see an unhelpful representation. To work with 2-forms in relativistic physics, it is often
preferable to use bespoke print method usetxyz
:
options(kform_symbolic_print = "txyz")
o
## An alternating linear map from V^2 to R with V=R^4:
## +6 dy^dz +5 dx^dz +4 dt^dz +3 dx^dy +2 dt^dy + dt^dx
Function hodge()
takes a g
argument to
specify the metric:
hodge(o)
## An alternating linear map from V^2 to R with V=R^4:
## + dy^dz -2 dx^dz +3 dt^dz +4 dx^dy -5 dt^dy +6 dt^dx
## An alternating linear map from V^2 to R with V=R^4:
## - dy^dz +2 dx^dz +3 dt^dz -4 dx^dy -5 dt^dy +6 dt^dx
## An alternating linear map from V^2 to R with V=R^4:
## +8 dx^dy -4 dx^dz +2 dy^dz