To cite the stokes
package in publications, please use
Hankin (2022). Convenience objects
dx
, dy
, and dz
, corresponding to
elementary differential forms, are discussed here (basis vectors e_1, e_2,
e_2 are discussed in vignette
ex.Rmd
).
Spivak (1965), in a memorable passage, states:
Fields and forms
If f\colon\mathbb{R}^n\longrightarrow\mathbb{R} is differentiable, then Df(p)\in\Lambda^1(\mathbb{R}^n). By a minor modification we therefore obtain a 1-form \mathrm{d}f, defined by
\mathrm{d}f(p)(v_p)=Df(p)(v).
Let us consider in particular the 1-forms \mathrm{d}\pi^i 1. It is customary to let x^i denote the function \pi^i (on \mathbb{R}^3 we often denote x^1, x^2, and x^3 by x, y, and z) \ldots Since \mathrm{d}x^i(p)(v_p)=\mathrm{d}\pi^i(p)(v_p)=D\pi^i(p)(v)=v^i, we see that \mathrm{d}x^1(p),\ldots,\mathrm{d}x^n(p) is just the dual basis to (e_1)_p,\ldots, (e_n)_p.
- Michael Spivak, 1969 (Calculus on Manifolds, Perseus books). Page 89
Spivak goes on to observe that every k-form \omega can be written \omega=\sum_{i_1 < \cdots <
i_k}\omega_{i_1,\ldots,
i_k}\mathrm{d}x^{i_1}\wedge\cdots\wedge\mathrm{d}x^{i_k}. If
working in \mathbb{R}^3, we have three
elementary forms \mathrm{d}x, \mathrm{d}y, and \mathrm{d}z; in the package we have the
pre-defined objects dx
, dy
, and
dz
. These are convenient for reproducing textbook
results.
We conceptualise dx
as “picking out” the x-component of a 3-vector and similarly for
dy
and dz
. Recall that \mathrm{d}x\colon\mathbb{R}^3\longrightarrow\mathbb{R}
and we have
dx\begin{pmatrix}u_1\\u_2\\u_3\end{pmatrix} = u_1\qquad dy\begin{pmatrix}u_1\\u_2\\u_3\end{pmatrix} = u_2\qquad dz\begin{pmatrix}u_1\\u_2\\u_3\end{pmatrix} = u_3.
Noting that 1-forms are a vector space, we have in general
(a\cdot\mathrm{d}x + b\cdot\mathrm{d}y +c\cdot\mathrm{d}z) \begin{pmatrix}u_1\\u_2\\u_3\end{pmatrix} = au_1+bu_2+cu_3
Numerically:
v <- c(2,3,7)
c(as.function(dx)(v),as.function(dx+dy)(v),as.function(dx+100*dz)(v))
## [1] 2 5 702
As Spivak says, dx
, dy
and dz
are conjugate to e_1,e_2,e_3 and these
are defined using function e()
. In this case it is safer to
pass n=3
to function e()
in order to specify
that we are working in \mathbb{R}^3.
e(1,3)
## [1] 1 0 0
e(2,3)
## [1] 0 1 0
e(3,3)
## [1] 0 0 1
We will now verify numerically that dx
, dy
and dz
are indeed conjugate to e_1,e_2,e_3, but to do this we will define an
orthonormal set of vectors u,v,w:
u <- e(1,3)
v <- e(2,3)
w <- e(3,3)
matrix(c(
as.function(dx)(u), as.function(dx)(v), as.function(dx)(w),
as.function(dy)(u), as.function(dy)(v), as.function(dy)(w),
as.function(dz)(u), as.function(dz)(v), as.function(dz)(w)
),3,3)
## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] 0 1 0
## [3,] 0 0 1
Above we see the conjugacy clearly [obtaining I_3 as expected].
The elementary forms may be combined with a wedge product. We note that \mathrm{d}x\wedge\mathrm{d}y\colon\left(\mathbb{R}^3\right)^2\longrightarrow\mathbb{R} and, for example,
(\mathrm{d}x\wedge\mathrm{d}y)\left( \begin{pmatrix}u_1\\u_2\\u_3\end{pmatrix}, \begin{pmatrix}v_1\\v_2\\v_3\end{pmatrix} \right) = \det\begin{pmatrix}u_1&v_1\\u_2&v_2\end{pmatrix}
and
(\mathrm{d}x\wedge\mathrm{d}y\wedge\mathrm{d}z) \left( \begin{pmatrix}u_1\\u_2\\u_3\end{pmatrix}, \begin{pmatrix}v_1\\v_2\\v_3\end{pmatrix}, \begin{pmatrix}w_1\\w_2\\w_3\end{pmatrix} \right) = \det\begin{pmatrix}u_1&v_1&w_1\\u_2&v_2&w_2\\u_3&v_3&w_3\end{pmatrix}
Numerically:
as.function(dx ^ dy)(cbind(c(2,3,5),c(4,1,2)))
## [1] -10
Above we see the package correctly giving \det\begin{pmatrix}2&4\\3&1\end{pmatrix}=2-12=-10.
Here I give some illustrations of the package print method.
dx
## An alternating linear map from V^1 to R with V=R^1:
## val
## 1 = 1
This is somewhat opaque and difficult to understand. It is easier to start with a more complicated example: take X=\mathrm{d}x\wedge\mathrm{d}y -7\mathrm{d}x\wedge\mathrm{d}z + 3\mathrm{d}y\wedge\mathrm{d}z:
(X <- dx^dy -7*dx^dz + 3*dy^dz)
## An alternating linear map from V^2 to R with V=R^3:
## val
## 1 3 = -7
## 2 3 = 3
## 1 2 = 1
We see that X
has three rows for the three elementary
components. Taking the row with coefficient -7 [which would be -7\mathrm{d}x\wedge\mathrm{d}z], this maps
\left(\mathbb{R}^3\right)^2 to \mathbb{R} and we have
(-7\mathrm{d}x\wedge\mathrm{d}z)\left(\begin{pmatrix} u_1\\u_2\\u_3\end{pmatrix}, \begin{pmatrix}v_1\\v_2\\v_3\end{pmatrix}\right)= -7\det\begin{pmatrix}u_1&v_1\\u_3&v_3\end{pmatrix}
The other two rows would be
(3\mathrm{d}y\wedge\mathrm{d}z)\left( \begin{pmatrix}u_1\\u_2\\u_3\end{pmatrix}, \begin{pmatrix}v_1\\v_2\\v_3\end{pmatrix} \right) = 3\det\begin{pmatrix}u_2&v_2\\u_3&v_3\end{pmatrix}
and
(1\mathrm{d}x\wedge\mathrm{d}y)\left( \begin{pmatrix}u_1\\u_2\\u_3\end{pmatrix}, \begin{pmatrix}v_1\\v_2\\v_3\end{pmatrix} \right) = \det\begin{pmatrix}u_1&v_1\\u_2&v_2\end{pmatrix}
Thus form X would be, by linearity
X\left( \begin{pmatrix}u_1\\u_2\\u_3\end{pmatrix}, \begin{pmatrix}v_1\\v_2\\v_3\end{pmatrix} \right) = -7\det\begin{pmatrix}u_1&v_1\\u_3&v_3\end{pmatrix} +3\det\begin{pmatrix}u_2&v_2\\u_3&v_3\end{pmatrix} +\det\begin{pmatrix}u_1&v_1\\u_2&v_2\end{pmatrix}.
We might want to verify that \mathrm{d}x\wedge\mathrm{d}y=-\mathrm{d}y\wedge\mathrm{d}x:
dx ^ dy == -dy ^ dx
## [1] TRUE
The print method is configurable and can display kforms in symbolic
form. For working with dx dy dz
we may set option
kform_symbolic_print
to dx
:
options(kform_symbolic_print = 'dx')
Then the results of calculations are more natural:
dx
## An alternating linear map from V^1 to R with V=R^1:
## + dx
dx^dy + 56*dy^dz
## An alternating linear map from V^2 to R with V=R^3:
## + dx^dy +56 dy^dz
However, this setting can be confusing if we work with \mathrm{d}x^i,i>3, for the print method runs out of alphabet:
rform()
## An alternating linear map from V^3 to R with V=R^7:
## +6 dy^dNA^dNA +5 dy^dNA^dNA -9 dNA^dNA^dNA +4 dx^dz^dNA +7 dx^dNA^dNA -3 dy^dz^dNA -8 dx^dNA^dNA +2 dx^dy^dNA + dx^dNA^dNA
Above, we see the use of NA
because there is no defined
symbol.
Function hodge()
returns the Hodge dual:
hodge(dx^dy + 13*dy^dz)
## An alternating linear map from V^1 to R with V=R^3:
## +13 dx + dz
Note that calling hodge(dx)
can be confusing:
hodge(dx)
## [1] 1
This returns a scalar because dx
is interpreted as a
one-form on one-dimensional space, which is a scalar form. One usually
wants the result in three dimensions:
hodge(dx,3)
## An alternating linear map from V^2 to R with V=R^3:
## + dy^dz
This is further discussed in the dovs
vignette.
Package function d()
will create elementary one-forms
but it is easier to interpret the output if we restore the default print
method
## An alternating linear map from V^1 to R with V=R^8:
## val
## 8 = 1
Following lines create dx.rda
, residing in the
data/
directory of the package.
save(dx, dy, dz, file="dx.rda")
Spivak introduces the \pi^i notation on page 11: “if \pi\colon\mathbb{R}^n\longrightarrow\mathbb{R}^n is the identity function, \pi(x)=x, then [its components are] \pi^i(x)=x^i; the function \pi^i is called the i^\mathrm{th} projection function”↩︎