Processing math: 84%

The volume element in n dimensions

volume(n)
is.volume(K,n=dovs(K))

Arguments

n

Dimension of the space

K

Object of class kform

Details

Spivak phrases it well (theorem 4.6, page 82):

If V has dimension n, it follows that Λn(V) has dimension 1. Thus all alternating n-tensors on V are multiples of any non-zero one. Since the determinant is an example of such a member of Λn(V) it is not surprising to find it in the following theorem:

Let v1,,vn be a basis for V and let ωΛn(V). If wi=nj=1aijvj then

ω(w1,,wn)=det

(see the examples for numerical verification of this).

Neither the zero k-form, nor scalars, are considered to be a volume element.

Value

Function volume() returns an object of class kform; function is.volume() returns a Boolean.

References

  • M. Spivak 1971. Calculus on manifolds, Addison-Wesley

Author

Robin K. S. Hankin

Examples



dx^dy^dz == volume(3) 
#> [1] TRUE

p <- 1
for(i in 1:7){p <- p ^ as.kform(i)}
p
#> An alternating linear map from V^7 to R with V=R^7:
#>                    val
#>  1 2 3 4 5 6 7  =    1
p == volume(7)  # should be TRUE
#> [1] TRUE

o <- volume(5)
M <- matrix(runif(25),5,5)
det(M) - as.function(o)(M)   # should be zero
#> [1] 0


is.volume(d(1) ^ d(2) ^ d(3) ^ d(4))
#> [1] TRUE
is.volume(d(1:9))
#> [1] TRUE