volume.Rd
The volume element in n dimensions
volume(n)
is.volume(K,n=dovs(K))
Spivak phrases it well (theorem 4.6, page 82):
If V has dimension n, it follows that Λn(V) has dimension 1. Thus all alternating n-tensors on V are multiples of any non-zero one. Since the determinant is an example of such a member of Λn(V) it is not surprising to find it in the following theorem:
Let v1,…,vn be a basis for V and let ω∈Λn(V). If wi=∑nj=1aijvj then
ω(w1,…,wn)=det
(see the examples for numerical verification of this).
Neither the zero k-form, nor scalars, are considered to be a volume element.
Function volume()
returns an object of class kform
;
function is.volume()
returns a Boolean.
M. Spivak 1971. Calculus on manifolds, Addison-Wesley
dx^dy^dz == volume(3)
#> [1] TRUE
p <- 1
for(i in 1:7){p <- p ^ as.kform(i)}
p
#> An alternating linear map from V^7 to R with V=R^7:
#> val
#> 1 2 3 4 5 6 7 = 1
p == volume(7) # should be TRUE
#> [1] TRUE
o <- volume(5)
M <- matrix(runif(25),5,5)
det(M) - as.function(o)(M) # should be zero
#> [1] 0
is.volume(d(1) ^ d(2) ^ d(3) ^ d(4))
#> [1] TRUE
is.volume(d(1:9))
#> [1] TRUE