kinner.Rd
Given two \(k\)-forms \(\alpha\) and \(\beta\), return the inner product \(\left\langle\alpha,\beta\right\rangle\). Here our underlying vector space \(V\) is \(\mathcal{R}^n\).
The inner product is a symmetric bilinear form defined in two stages. First, we specify its behaviour on decomposable \(k\)-forms \(\alpha=\alpha_1\wedge\cdots\wedge\alpha_k\) and \(\beta=\beta_1\wedge\cdots\wedge\beta_k\) as
$$ \left\langle\alpha,\beta\right\rangle=\det\left( \left\langle\alpha_i,\beta_j\right\rangle_{1\leq i,j\leq n}\right) $$
and secondly, we extend to the whole of \(\Lambda^k(V)\) through linearity.
kinner(o1,o2,M)
Returns a real number
There is a vignette available: type vignette("kinner")
at
the command line.