zap.Rd
Equivalent to zapsmall()
Given an object of class ktensor
or kform
, coefficients
close to zero are ‘zapped’, i.e., replaced by ‘0’, using
base::zapsmall()
.
Note, zap()
actually changes the numeric value, it is not just
a print method.
Returns an object of the same class
S <- rform(7)
S == zap(S) # should be TRUE because the coeffs are integers
#> [1] TRUE
(a <- rform())
#> An alternating linear map from V^3 to R with V=R^7:
#> val
#> 1 5 7 = 9
#> 2 4 5 = 7
#> 4 6 7 = 6
#> 2 5 7 = -4
#> 1 2 7 = -3
#> 1 4 6 = 3
#> 1 4 5 = 9
(b <- rform()*1e-11)
#> An alternating linear map from V^3 to R with V=R^7:
#> val
#> 1 2 3 = 1e-11
#> 4 5 6 = 2e-11
#> 1 3 6 = -3e-11
#> 3 4 7 = -5e-11
#> 2 4 6 = 4e-11
#> 1 4 7 = 6e-11
#> 1 2 5 = 9e-11
#> 1 5 6 = -7e-11
#> 1 3 4 = 8e-11
a+b
#> An alternating linear map from V^3 to R with V=R^7:
#> val
#> 2 4 5 = 7e+00
#> 4 6 7 = 6e+00
#> 1 2 3 = 1e-11
#> 1 3 6 = -3e-11
#> 4 5 6 = 2e-11
#> 1 4 7 = 6e-11
#> 2 4 6 = 4e-11
#> 3 4 7 = -5e-11
#> 1 5 6 = -7e-11
#> 1 2 5 = 9e-11
#> 1 4 5 = 9e+00
#> 1 4 6 = 3e+00
#> 1 3 4 = 8e-11
#> 1 5 7 = 9e+00
#> 1 2 7 = -3e+00
#> 2 5 7 = -4e+00
zap(a+b)
#> An alternating linear map from V^3 to R with V=R^7:
#> val
#> 2 5 7 = -4
#> 1 2 7 = -3
#> 1 5 7 = 9
#> 1 4 6 = 3
#> 1 4 5 = 9
#> 4 6 7 = 6
#> 2 4 5 = 7