ktensor.Rd
Functionality for \(k\)-tensors
ktensor(S)
as.ktensor(M,coeffs)
is.ktensor(x)
# S3 method for class 'ktensor'
as.function(x,...)
A \(k\)-tensor object \(S\) is a map from \(V^k\) to the reals \(R\), where \(V\) is a vector space (here \(R^n\)) that satisfies multilinearity:
$$S\left(v_1,\ldots,av_i,\ldots,v_k\right)=a\cdot S\left(v_1,\ldots,v_i,\ldots,v_k\right)$$
and
$$S\left(v_1,\ldots,v_i+{v_i}',\ldots,v_k\right)=S\left(v_1,\ldots,v_i,\ldots,x_v\right)+ S\left(v_1,\ldots,{v_i}',\ldots,v_k\right).$$
Note that this is not equivalent to linearity over \(V^{nk}\) (see examples).
In the stokes package, \(k\)-tensors are represented as
sparse arrays (spray
objects), but with a class of
c("ktensor", "spray")
. This is a natural and efficient
representation for tensors that takes advantage of sparsity using
spray package features.
Function as.ktensor()
will coerce a \(k\)-form to a
\(k\)-tensor via kform_to_ktensor()
.
All functions documented here return a ktensor
object
except as.function.ktensor()
, which returns a function.
Spivak 1961
as.ktensor(cbind(1:4,2:5,3:6),1:4)
#> A linear map from V^3 to R with V=R^6:
#> val
#> 4 5 6 = 4
#> 3 4 5 = 3
#> 2 3 4 = 2
#> 1 2 3 = 1
## Test multilinearity:
k <- 4
n <- 5
u <- 3
## Define a randomish k-tensor:
S <- ktensor(spray(matrix(1+sample(u*k)%%n,u,k),seq_len(u)))
## And a random point in V^k:
E <- matrix(rnorm(n*k),n,k)
E1 <- E2 <- E3 <- E
x1 <- rnorm(n)
x2 <- rnorm(n)
r1 <- rnorm(1)
r2 <- rnorm(1)
# change one column:
E1[,2] <- x1
E2[,2] <- x2
E3[,2] <- r1*x1 + r2*x2
f <- as.function(S)
r1*f(E1) + r2*f(E2) -f(E3) # should be small
#> [1] 2.220446e-16
## Note that multilinearity is different from linearity:
r1*f(E1) + r2*f(E2) - f(r1*E1 + r2*E2) # not small!
#> [1] -0.4413777