Quaternionic arithmetic with Clifford algebra
Robin K. S. Hankin
Source:vignettes/quaternion_clifford.Rmd
quaternion_clifford.Rmd
To cite the clifford
package in publications please use
Hankin (2022). This short document shows
how quaternionic arithmetic may be implemented as a special case of
Clifford algebras. This is done for illustrative purposes only; to
manipulate quaternions in R the onion
package (Hankin 2006) is much more efficient and
includes more transparent idiom.
Hamilton’s Broome Bridge insight:
\[ \mathbf{i}^2= \mathbf{j}^2= \mathbf{k}^2= \mathbf{i}\mathbf{j}\mathbf{k}=-1 \]
The BBI and associativity together imply
\[ \mathbf{j}\mathbf{k}=-\mathbf{k}\mathbf{j}=\mathbf{i}\qquad \mathbf{k}\mathbf{i}=-\mathbf{i}\mathbf{k}=\mathbf{j}\qquad \mathbf{i}\mathbf{j}=-\mathbf{j}\mathbf{i}=\mathbf{k}\qquad \]
and if we require a distributive algebra we get the quaternions. A general quaternion is of the form \(a+\mathbf{i}b+\mathbf{j}c+\mathbf{k}d\); addition is componentwise and multiplication follows from the above.
To express quaternionic multiplication using Clifford algebra we make the following identifications:
\[ \mathbf{i}\leftrightarrow -e_{12}\\ \mathbf{j}\leftrightarrow -e_{13}\\ \mathbf{k}\leftrightarrow -e_{23}\\ \]
Thus, for example, \(\mathbf{ii}=(-e_{12})(-e_{12})=+e_{1212}=-e_{1122}=-1\)
and \(\mathbf{ij}=(-e_{12})(-e_{13})=+e_{1213}=-e_{1123}=-e_{23}=\mathbf{k}\).
The default signature [in which \(e_i^2=+1\)] is fine here, but as a safety
measure we can set maxdim
to 3:
options(maxdim=3) # paranoid safety measure
We might wish to multiply \(q_1=1+2\mathbf{i}+3\mathbf{j}+4\mathbf{k}\) by \(q_2=-2+\mathbf{i}-2\mathbf{j}+\mathbf{k}\):
## Element of a Clifford algebra, equal to
## + 1 - 2e_12 - 3e_13 - 4e_23
## Element of a Clifford algebra, equal to
## - 2 - 1e_12 + 2e_13 - 1e_23
q1*q2
## Element of a Clifford algebra, equal to
## - 2 - 8e_12 + 6e_13 + 14e_23
The product would correspond to \(-2+8\mathbf{i} -6\mathbf{j}
-14\mathbf{k}\). Note that the “*
” in
“q1*q2
” is a clifford product. It is possible to
leverage the onion
package and coerce between
clifford
objects and quaternions (but don’t actually do it,
you crazy fool):
`clifford_to_quaternion` <- function(C){
C <- as.clifford(C)
tC <- disordR::elements(terms(C))
stopifnot(all(c(tC,recursive=TRUE) <= 3))
jj <- unlist(lapply(tC,length))
stopifnot(all(jj <= 2)) # safety check
stopifnot(all(jj%%2 == 0)) # safety check
out <- matrix(c(const(C), -getcoeffs(C,list(c(1,2),c(1,3),c(2,3)) )))
as.quaternion(out)
}
`quaternion_to_clifford` <- function(Q){
Q <- as.numeric(Q)
stopifnot(length(Q)==4)
clifford(list(numeric(0),c(1,2),c(1,3),c(2,3)),c(Q[1],-Q[2:4]))
}
We may verify that these maps behave properly by defining some random-ish quaternions and Clifford objects:
q1 <- +1 + 2* -e(c(1,2)) + 3*-e(c(1,3)) + 4*-e(c(2,3))
q2 <- -2 + 1* -e(c(1,2)) - 2*-e(c(1,3)) + 1*-e(c(2,3))
H1 <- as.quaternion(c(3,-5,2,1),single=TRUE)
H2 <- as.quaternion(c(1,2,-2,2),single=TRUE)
First, check that they are inverses of one another:
c( # check they are inverses of one another
q1 == quaternion_to_clifford(clifford_to_quaternion(q1)),
q2 == quaternion_to_clifford(clifford_to_quaternion(q2)),
H1 == clifford_to_quaternion(quaternion_to_clifford(H1)),
H2 == clifford_to_quaternion(quaternion_to_clifford(H2))
)
## [1] TRUE TRUE TRUE TRUE
Next, verify that they are homomorphisms:
c(
q1*q2 == quaternion_to_clifford(clifford_to_quaternion(q1)*clifford_to_quaternion(q2)),
H1*H2 == clifford_to_quaternion(quaternion_to_clifford(H1)*quaternion_to_clifford(H2))
)
## [1] TRUE TRUE
Note that in package idiom the asterisk, “*
” represents
either Clifford geometric product or Hamilton’s quaternionic
multiplication depending on its arguments.
Alternative mapping
Alternatively we might consider the even subalgebra of \(\operatorname{Cl}(0,3)\) with general element \(q_0 + q_1e_{23} -q_2e_{13} + q_3e_{12}\) (note change of sign for \(q_2\)). Thus
\[ \mathbf{i}\leftrightarrow e_{23}\\ \mathbf{j}\leftrightarrow -e_{13}\\ \mathbf{k}\leftrightarrow e_{12}\\ \]
A quick-and-dirty R function might be
signature(0,3)
cliff2quat <- function(C){
out <- getcoeffs(C,list(numeric(0),c(2,3),c(1,3),c(1,2)))
out[2] <- -out[2]
as.quaternion(out,single=TRUE)
}
quat2cliff <- function(H){
jj <- c(as.matrix(H))
jj[2] <- -jj[2]
clifford(list(numeric(0),c(2,3),c(1,3),c(1,2)),jj)
}
Then verification is straightforward:
c(
cliff2quat(quat2cliff(H1)) == H1,
cliff2quat(quat2cliff(H2)) == H2,
quat2cliff(cliff2quat(q1)) == q1,
quat2cliff(cliff2quat(q2)) == q2,
cliff2quat(q1*q2) == cliff2quat(q1) * cliff2quat(q2),
quat2cliff(H1*H2) == quat2cliff(H1) * quat2cliff(H2)
)
## [1] TRUE TRUE TRUE TRUE TRUE TRUE