Function `pseudoscalar()` in the `clifford` package
Robin K. S. Hankin
Source:vignettes/pseudoscalar.Rmd
pseudoscalar.Rmd
pseudoscalar
## function ()
## {
## m <- getOption("maxdim")
## if (is.null(m)) {
## stop("pseudoscalar requires a finite value of maxdim; set it with something like options(maxdim = 6)")
## }
## else {
## return(e(seq_len(m)))
## }
## }
To cite the clifford
package in publications please use
Hankin (2022). This short document
discusses the pseudoscalar clifford
R package. The behaviour of pseudoscalar()
fails if
maxdim
is not set:
## Error in pseudoscalar(): pseudoscalar requires a finite value of maxdim; set it with something like options(maxdim = 6)
Function pseudoscalar()
needs option maxdim
to ascertain what object to return. Let us set maxdim
to
7:
options(maxdim=7)
pseudoscalar()
## Element of a Clifford algebra, equal to
## + 1e_1234567
The example above makes it clear that pseudoscalar()
returns the unit pseudoscalar, in whatever dimension we are
working in. The usual workflow would be to define maxdim
and a signature at the start of a session, then define an R object
(conventionally I
), as the pseudoscalar. However, in this
vignette we will repeatedly redefine the signature and the maximum
dimension to illustrate different aspects of
pseudoscalar()
. The first feature of
options(maxdim=3)
signature(3) # Cl(3,0)
(I <- pseudoscalar())
## Element of a Clifford algebra, equal to
## + 1e_123
drop(I^2)
## [1] -1
And for Minkowski space:
options(maxdim=4)
signature(3,1) # Cl(3,1)
I <- pseudoscalar()
drop(I^2)
## [1] -1
However, we can easily define other signatures in which
options(maxdim=4)
signature(2,2) # Cl(2,2)
(I <- pseudoscalar())
## Element of a Clifford algebra, equal to
## + 1e_1234
drop(I^2)
## [1] 1
The pseudoscalar I defines an orientation in the sense that, for any
ordered set of
options(maxdim=5)
signature(5)
I <- pseudoscalar()
ai <- list(); for(i in 1:5){ai[[i]] <- as.1vector(rnorm(5))}
ai[[1]] # the other 5 look very similar
## Element of a Clifford algebra, equal to
## + 1.262954e_1 - 0.3262334e_2 + 1.329799e_3 + 1.272429e_4 + 0.4146414e_5
Reduce(`^`,ai)
## Element of a Clifford algebra, equal to
## + 3.32019e_12345
Above we see, from the last line, that the vectors permutations
package (Hankin
2020):
(p <- permutation("(12)(345)"))
## [1] (12)(345)
is.even(p)
## [1] FALSE
Above, we see that p
is an odd permutation,
being a product of a transposition and a three-cycle.
## [1] 3.32019 -3.32019
Above, we see that the sign of the wedge product of the permuted list
has changed, consistent with the permutation’s being odd. We know
various things about the pseudoscalar; below we will verify that
options(maxdim=7)
signature(7)
(I <- pseudoscalar())
## Element of a Clifford algebra, equal to
## + 1e_1234567
(a <- as.1vector(sample(1:10,5)))
## Element of a Clifford algebra, equal to
## + 7e_1 + 6e_2 + 1e_3 + 4e_4 + 8e_5
(A <- rcliff())
## Element of a Clifford algebra, equal to
## + 7 + 2e_4 + 7e_234 - 6e_1345 + 9e_16 - 8e_126 + 6e_236 + 3e_1236 - 1e_1356 -
## 9e_2456
Above we choose randomish values for %.%
” breaks markdown documents]:
LHS <- cliffdotprod(a, A*I) # Usual idiom would be "a %.% (A*I)"
RHS <- (a^A)*I
LHS - RHS
## Element of a Clifford algebra, equal to
## the zero clifford element (0)