Estimation of neutral community parameters using a two-stage maximum-likelihood procedure
optimal.params.sloss.RdFunction optimal.params.sloss() returns maximum likelihood
estimates of theta and m(k) using numerical
optimization.
It differs from untb's optimal.params() function as it
applies to a network of smaller community samples k instead of
to a single large community sample.
Although there is a single, common theta for all communities,
immigration estimates are provided for each local community k,
sharing a same biogeographical background.
Usage
optimal.params.sloss(D, nbres = 100, ci = FALSE, cint = c(0.025, 0.975))Value
- theta
Mean
thetaestimate- I
The vector of estimated immigration numbers
I(k)
Output of the bootstrap procedure, if ci = T:
- thetaci
Confidence interval for
theta- msampleci
Confidence intervals for
m(k)- thetasamp
theta estimates provided by the resampling procedure
- Iboot
Bootstrapped values of
I(k)- mboot
Bootstrapped values of
m(k)
References
Francois Munoz, Pierre Couteron, B. R. Ramesh, and Rampal S. Etienne 2007. “Estimating parameters of neutral communities: from one single large to several small samples”. Ecology 88(10):2482-2488
Note
The function returns unhelpful output when run with the
caruso dataset as in optimal.params.sloss(caruso). The
reason for this behaviour is unknown.
Examples
data(ghats)
optimal.params.sloss(ghats)
#> $theta
#> [1] 55.55249
#>
#> $m
#> [1] 0.010169266 0.012183169 0.015668392 0.011809752 0.014205202 0.016711233
#> [7] 0.015310061 0.012147998 0.015344402 0.015566512 0.013218774 0.010232225
#> [13] 0.006476517 0.009309429 0.016707263 0.014491497 0.012162066 0.009190696
#> [19] 0.009243802 0.012035898 0.012229750 0.011327484 0.014109889 0.005542073
#> [25] 0.012006370 0.007279013 0.022656762 0.015584249 0.012371054 0.011394466
#> [31] 0.018888178 0.017471137 0.011089396 0.006492917 0.009196983 0.012487368
#> [37] 0.020117358 0.014740135 0.019014335 0.018376337 0.015496710 0.017826122
#> [43] 0.012099540 0.013114927 0.010243057 0.014614345 0.012467319 0.015696922
#> [49] 0.012454655 0.018108994
#>
#> $I
#> [1] 2.1985808 3.2436918 7.1152556 2.5694411 5.5622204 10.2311375
#> [7] 4.8354600 4.3163827 5.1737293 8.4123348 4.6081727 2.9876835
#> [13] 0.8800294 3.7493665 6.4226505 6.6758830 2.7578438 2.0778125
#> [19] 1.9313198 2.5583304 2.6248078 2.7382866 5.7962901 1.9338165
#> [25] 3.0380686 0.7552357 14.4191985 6.9022999 3.5824401 3.7458837
#> [31] 16.8453334 8.3930121 3.0613536 1.1240802 1.4758941 7.3848400
#> [37] 12.9957276 7.5850530 13.0059175 13.6096933 9.7277142 10.3453061
#> [43] 6.8954732 9.2360039 2.8045961 4.7607805 4.5322727 7.6865718
#> [49] 4.7420104 8.0226954
#>