Estimation of neutral community parameters using a two-stage maximum-likelihood procedure
optimal.params.sloss.Rd
Function optimal.params.sloss()
returns maximum likelihood
estimates of theta
and m(k)
using numerical
optimization.
It differs from untb
's optimal.params()
function as it
applies to a network of smaller community samples k
instead of
to a single large community sample.
Although there is a single, common theta
for all communities,
immigration estimates are provided for each local community k
,
sharing a same biogeographical background.
Usage
optimal.params.sloss(D, nbres = 100, ci = FALSE, cint = c(0.025, 0.975))
Value
- theta
Mean
theta
estimate- I
The vector of estimated immigration numbers
I(k)
Output of the bootstrap procedure, if ci = T:
- thetaci
Confidence interval for
theta
- msampleci
Confidence intervals for
m(k)
- thetasamp
theta estimates provided by the resampling procedure
- Iboot
Bootstrapped values of
I(k)
- mboot
Bootstrapped values of
m(k)
References
Francois Munoz, Pierre Couteron, B. R. Ramesh, and Rampal S. Etienne 2007. “Estimating parameters of neutral communities: from one single large to several small samples”. Ecology 88(10):2482-2488
Note
The function returns unhelpful output when run with the
caruso
dataset as in optimal.params.sloss(caruso)
. The
reason for this behaviour is unknown.
Examples
data(ghats)
optimal.params.sloss(ghats)
#> $theta
#> [1] 53.62875
#>
#> $m
#> [1] 0.010177470 0.012216350 0.015685478 0.011830555 0.014240947 0.016768434
#> [7] 0.015352210 0.012180953 0.015387777 0.015619090 0.013257703 0.010223119
#> [13] 0.006488277 0.009335648 0.016764041 0.014578575 0.012195604 0.009212344
#> [19] 0.009267170 0.012063813 0.012263035 0.011362638 0.014141649 0.005551203
#> [25] 0.012033473 0.007293550 0.022733042 0.015638402 0.012409440 0.011432190
#> [31] 0.018951753 0.017521335 0.011116481 0.006505776 0.009218522 0.012530580
#> [37] 0.020189267 0.014795946 0.019090552 0.018458212 0.015547909 0.017887769
#> [43] 0.012130589 0.013155617 0.010273853 0.014666531 0.012509133 0.015756999
#> [49] 0.012496094 0.018181228
#>
#> $I
#> [1] 2.2003728 3.2526354 7.1231383 2.5740214 5.5764189 10.2667549
#> [7] 4.8489799 4.3282366 5.1885828 8.4411998 4.6219260 2.9849974
#> [13] 0.8816377 3.7600257 6.4448490 6.7165913 2.7655427 2.0827522
#> [19] 1.9362478 2.5643365 2.6320403 2.7468823 5.8095239 1.9370203
#> [25] 3.0450102 0.7567551 14.4688736 6.9266651 3.5936955 3.7584287
#> [31] 16.9031275 8.4175569 3.0689149 1.1263211 1.4793828 7.4107195
#> [37] 13.0431377 7.6142041 13.0590650 13.6714708 9.7603611 10.3817342
#> [43] 6.9133849 9.2650415 2.8131156 4.7780337 4.5476662 7.7164620
#> [49] 4.7579876 8.0552892
#>