Etienne's sampling formula
etienne.Rd
Function etienne()
returns the probability of a given dataset
given theta
and m
according to the Etienne's sampling
formula. Function optimal.params()
returns the maximum likelihood
estimates for theta
and m
using numerical optimization
Usage
etienne(theta, m, D, log.kda = NULL, give.log = TRUE, give.like = TRUE)
optimal.params(D, log.kda = NULL, start = NULL, give = FALSE, ...)
Arguments
- theta
Fundamental biodiversity parameter
- m
Immigration probability
- D
Dataset; a count object
- log.kda
The KDA as defined in equation A11 of Etienne 2005. See details section
- give.log
Boolean, with default
TRUE
meaning to return the logarithm of the value- give.like
Boolean, with default
TRUE
meaning to return the likelihood andFALSE
meaning to return the probability- start
In function
optimal.params()
, the start point for the optimization routine \((\theta,m)\).- give
In function
optimal.params()
, Boolean, withTRUE
meaning to return all output of the optimization routine, and defaultFALSE
meaning to return just the point estimate- ...
In function
optimal.params()
, further arguments passed tooptim()
Details
Function etienne()
is just Etienne's formula 6:
$$P[D|\theta,m,J]=
\frac{J!}{\prod_{i=1}^Sn_i\prod_{j=1}^J{\Phi_j}!}
\frac{\theta^S}{(\theta)_J}\times
\sum_{A=S}^J\left(K(D,A)
\frac{(\theta)_J}{(\theta)_A}
\frac{I^A}{(I)_J}
\right)$$
where \(\log K(D,A)\) is given by function logkda()
(qv). It might be useful to know the (trivial) identity for the
Pochhammer symbol [written \((z)_n\)] documented in
theta.prob.Rd
. For convenience, Etienne's Function
optimal.params()
uses optim()
to return the maximum
likelihood estimate for \(\theta\) and \(m\).
Compare function optimal.theta()
, which is restricted to no
dispersal limitation, ie \(m=1\).
Argument log.kda
is optional: this is the \(K(D,A)\) as defined
in equation A11 of Etienne 2005; it is computationally expensive to
calculate. If it is supplied, the functions documented here will not
have to calculate it from scratch: this can save a considerable amount
of time
Examples
data(butterflies)
if (FALSE) optimal.params(butterflies) # \dontrun{} #takes too long without PARI/GP
#Now the one from Etienne 2005, supplementary online info:
zoo <- count(c(pigs=1, dogs=1, cats=2, frogs=3, bats=5, slugs=8))
l <- logkda.R(zoo, use.brob=TRUE) # Use logkda() if pari/gp is available
optimal.params(zoo, log.kda=l) #compare his answer of 7.047958 and 0.22635923.
#> theta m
#> 7.0577736 0.2261709