Estimation of local immigration using GST(k) statistics
optimal.params.gst.Rd
Functions optimal.params.gst()
, GST.k()
and I.k()
apply to count data collected over a network of community samples k
(species by sample matrix). A theoretical relationship between
GST(k)
statistics and local immigration numbers I(k)
, in
the context of a spatially-implicit neutral community model (Munoz et
al 2008), is used to provide GST(k)
and I(k)
statistics
any sample k.
If requested, optimal.params.gst()
further provides the user with
confidence bounds.
Usage
optimal.params.gst(D, exact = TRUE, ci = FALSE, cint = c(0.025, 0.975), nbres = 100)
GST.k(D, exact = TRUE)
I.k(D, exact = TRUE)
Arguments
- D
A data table including species counts in a network of community samples (columns)
- exact
If
TRUE
, exact similarity statistics are calculated (sampling without replacement) while, if false, approximate statistics (sampling with replacement) are considered (see Munoz et al 2008 for further statistical discussion)- ci
Specifies whether bootstraps confidence intervals of immigration estimates are to be calculated
- cint
Bounds of the confidence interval, if
ci = TRUE
- nbres
Number of rounds of the bootstrap procedure for confidence interval calculation, if ci = T
Value
- GST
A vector of 0 to 1
GST(k)
numbers (specific output ofGST.k
)- nk
Number of individuals within samples (length = number of samples)
- distrib
Species counts of the merged dataset (output of
GST.k
andI.k
)- I
Immigration estimates (output of
I.k
andoptimal.params.gst
)- m
Corresponding immigration rates (output of
I.k
andoptimal.params.gst
). Specific outputs ofoptimal.params.gst
when ci = T (bootstrap procedure)- Ici
Confidence interval of
I(k)
- mci
Confidence interval of
m(k)
- Iboot
Table of bootstrapped values of
I(k)
- mboot
Table of bootstrapped values of i
m(k)
References
Francois Munoz, Pierre Couteron and B.R. Ramesh (2008). “Beta-diversity in spatially implicit neutral models: a new way to assess species migration.” The American Naturalist 172(1): 116-127
Examples
data(ghats)
optimal.params.gst(ghats)
#> $I
#> [1] 16.774694 12.915263 18.654831 8.420867 8.638719 7.334220 23.669878
#> [8] 10.362868 12.024855 19.147550 12.596480 8.274654 11.324572 4.841787
#> [15] 34.973891 10.915280 28.603709 11.719364 18.204995 16.323013 27.496478
#> [22] 27.646331 3.826457 1.323756 7.927096 14.818397 26.328859 10.753630
#> [29] 29.014992 14.957210 8.205501 8.468848 8.681752 13.086981 17.554385
#> [36] 4.362208 17.625929 16.267331 10.960310 9.976792 9.353981 13.502007
#> [43] 4.643317 2.569371 13.644226 34.402876 16.861746 12.533388 17.380008
#> [50] 25.281964
#>
#> $m
#> [1] 0.072688619 0.046808801 0.040061500 0.037690602 0.021890195 0.012036449
#> [7] 0.070726047 0.028677179 0.034953449 0.034741242 0.035324184 0.027835046
#> [13] 0.077393510 0.011989317 0.084687899 0.023477997 0.113235506 0.049717443
#> [19] 0.080837440 0.072122640 0.114809530 0.103681647 0.009359611 0.003800362
#> [25] 0.030733862 0.125773200 0.040610345 0.024070605 0.092106701 0.043997332
#> [31] 0.009290590 0.017626217 0.030821139 0.070707194 0.099427637 0.007414154
#> [37] 0.027090726 0.031087992 0.016071772 0.013537457 0.014910212 0.023139607
#> [43] 0.008179990 0.003683320 0.047934314 0.096799654 0.044861564 0.025343866
#> [49] 0.044181218 0.054927123
#>