Are two permutations conjugate?
conjugate.RdReturns TRUE if two permutations are conjugate and FALSE
otherwise.
Usage
are_conjugate(x, y)
are_conjugate_single(a,b)Details
Two permutations are conjugate if and only if they have the same shape.
Function are_conjugate() is vectorized and user-friendly;
function are_conjugate_single() is lower-level and operates
only on length-one permutations.
The reason that are_conjugate_single() is a separate function
and not bundled inside are_conjugate() is that dealing with the
identity permutation is a pain in the arse.
Note
The functionality detects conjugateness by comparing the shapes of two
permutations; permutations are coerced to cycle form because function
shape() does.
The group action of conjugation, that is \(x^y\) or y^-1 x
y, is documented at conjugation.
all(are_conjugate(x,x^y)) is always TRUE.
Examples
as.cycle("(123)(45)") %~% as.cycle("(89)(712)") # same shape
#> [1] TRUE
as.cycle("(123)(45)") %~% as.cycle("(89)(7124)") # different shape
#> [1] FALSE
are_conjugate(rperm(20,3),rperm(20,3))
#> [1] FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
#> [13] FALSE TRUE TRUE FALSE TRUE TRUE FALSE FALSE
rperm(20,3) %~% as.cycle(1:3)
#> [1] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [13] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
z <- rperm(300,4)
stopifnot(all(are_conjugate(z,id)==is.id(z)))
z <- rperm(20)
stopifnot(all(z %~% capply(z,sample)))
data(megaminx)
stopifnot(all(are_conjugate(megaminx,megaminx^as.cycle(sample(129)))))