Group-theoretic commutator: the dot object
commutator.Rd
In the permutations package, the dot is defined as the
Group-theoretic commutator:
\([x,y]=x^{-1}y^{-1}xy\). This is a bit of an
exception to the usual definition of xy-yx
(along with the
freegroup package). Package idiom is commutator(x,y)
or
.[x,y]
.
The Jacobi identity does not make sense in the context of the permutations package, but the Hall-Witt identity is obeyed.
The “dot” object is defined and discussed in inst/dot.Rmd
,
which creates file data/dot.rda
.
Usage
commutator(x, y)
Examples
.[as.cycle("123456789"),as.cycle("12")]
#> [1] (123)
#> [coerced from word form]
x <- rperm(10,7)
y <- rperm(10,8)
z <- rperm(10,9)
uu <-
commutator(commutator(x,y),z^x) *
commutator(commutator(z,x),y^z) *
commutator(commutator(y,z),x^y)
stopifnot(all(is.id(uu))) # this is the Hall-Witt identity
.[x,y]
#> [1] (1735)(24) (1875243) (16)(2584) (1753428) (1467)(2583)
#> [6] (1473268) (16)(237)(45) (157)(23486) (1743856) (18)(273564)
#> [coerced from word form]
is.id(.[.[x,y],z^x] * .[.[z,x],y^z] * .[.[y,z],x^y])
#> [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
is.id(.[.[x,-y],z]^y * .[.[y,-z],x]^z * .[.[z,-x],y]^x)
#> [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE