Cartan map between clifford algebras
cartan.Rd
Cartan's map isomorphisms from \(\operatorname{Cl}(p,q)\) to \(\operatorname{Cl}(p-4,q+4)\) and \(\operatorname{Cl}(p+4,q-4)\)
Value
Returns an object of class clifford
. The default value
n=1
maps \(\operatorname{Cl}(4,q)\) to
\(\operatorname{Cl}(0,q+4)\) (cartan()
) and
\(\operatorname{Cl}(0,q)\) to
\(\operatorname{Cl}(4,q-4)\).
References
E. Hitzer and S. Sangwine 2017. “Multivector and multivector matrix inverses in real Clifford algebras”, Applied Mathematics and Computation. 311:3755-89
Examples
a <- rcliff(d=7) # Cl(4,3)
b <- rcliff(d=7) # Cl(4,3)
signature(4,3) # e1^2 = e2^2 = e3^2 = e4^2 = +1; e5^2 = e6^2=e7^2 = -1
ab <- a*b # multiplication in Cl(4,3)
signature(0,7) # e1^2 = ... = e7^2 = -1
cartan(a)*cartan(b) == cartan(ab) # multiplication in Cl(0,7); should be TRUE
#> [1] TRUE
signature(Inf) # restore default