Classical mechanics; Newtonian approximation; infinite speed of light
galileo.Rd
The Lorentz transforms reduce to their classical limit, the Galilean
transforms, if speeds are low compared with \(c\). Package idiom for
working in a classical framework is to use an infinite speed of light:
sol(Inf)
. Here I show examples of this.
Examples
sol(Inf)
#> [1] Inf
boost(as.3vel(1:3))
#> t x y z
#> t 1 0 0 0
#> x -1 1 0 0
#> y -2 0 1 0
#> z -3 0 0 1
as.3vel(1:3) + as.3vel(c(-1,4,5)) # classical velocity addition
#> A vector of three-velocities (speed of light = Inf)
#> x y z
#> [1,] 0 6 8
rot(as.3vel(1:3),as.3vel(c(-4,5,2))) # identity matrix
#> x y z
#> x 1 0 0
#> y 0 1 0
#> z 0 0 1
B <- boost(as.3vel(1:3))
orthog(B) %*% pureboost(B) # should be B
#> t x y z
#> [1,] 1 0 0 0
#> [2,] -1 1 0 0
#> [3,] -2 0 1 0
#> [4,] -3 0 0 1
sol(1)
#> [1] 1