Skip to contents
-
Extract.free [.free [<-.free
- Extract or replace parts of a free group object
-
Ops(<free>) free_equal() free_power() free_repeat() juxtapose() inverse(<free>) inverse(<matrix>)
- Arithmetic Ops methods for the free group
-
abelianize() is.abelian()
- Abelianization of free group elements
-
abs(<free>)
- Absolute value of a
free object
-
alpha() abc()
- Alphabetical free group elements
-
backwards()
- Write free objects backwards
-
c(<free>) rep(<free>)
- Concatenation of free objects
-
char_to_matrix()
- Convert character vectors to free objects
-
cumsum(<free>)
- Cumulative sum
-
is.cyclically_reduced() as.cyclically_reduced() cyclically_reduce() cyclically_reduce_tietze() is.conjugate_single() `%~%` is.conjugate(<free>) allconj()
- Cyclic reductions of a word
-
donames()
- Names attributes of free group elements
-
dot . dot-class extract commutator jacobi dot_error [.dot [,dot-method [,dot,ANY,ANY-method [,dot,ANY,missing-method [,dot,missing,ANY-method [,dot,missing,missing-method [,dot,free,ANY-method [,dot,free,ANY,ANY-method [,dot,matrix,matrix-method
- Class “dot”
-
free() as.free() is.free() list_to_free()
- Objects of class
free
-
freegroup-package freegroup
- The Free Group
-
getlet()
- Get letters of a freegroup object
-
is.id() id()
- The identity element
-
keep() discard()
- Keep or drop symbols
-
permsymb_single_X() permsymb_single_f() permsymb_vec() permsymb() autosub_lowlevel() autosub()
- Outer automorphisms of the free group
-
is.primitive() is.power()
- Primitive elements of the free algebra
-
print(<free>) as.character_free()
- Print free objects
-
reduce() is_reduced() remove_zero_powers() consolidate() is_proper()
- Reduction of a word to reduced form
-
rfree() rfreee() rfreeee()
- Random free objects
-
shift()
- Permute elements of a vector in a cycle
-
size() total() number() bigness()
- Bignesses of a free object
-
subsu() subs() flip()
- Substitute and invert symbols
-
sum(<free>)
- Repeated summation by concatenation
-
tietze(<free>) tietze(<matrix>) vec_to_matrix()
- Tietze form for free group objects