Skip to contents
-
Extract.free
[.free
[<-.free
- Extract or replace parts of a free group object
-
Ops(<free>)
free_equal()
free_power()
free_repeat()
juxtapose()
inverse(<free>)
inverse(<matrix>)
- Arithmetic Ops methods for the free group
-
abelianize()
is.abelian()
- Abelianization of free group elements
-
abs(<free>)
- Absolute value of a
free
object
-
alpha()
abc()
- Alphabetical free group elements
-
backwards()
- Write free objects backwards
-
c(<free>)
rep(<free>)
- Concatenation of free objects
-
char_to_matrix()
- Convert character vectors to free objects
-
cumsum(<free>)
- Cumulative sum
-
is.cyclically_reduced()
as.cyclically_reduced()
cyclically_reduce()
cyclically_reduce_tietze()
is.conjugate_single()
`%~%`
is.conjugate(<free>)
allconj()
- Cyclic reductions of a word
-
donames()
- Names attributes of free group elements
-
dot
.
dot-class
extract
commutator
jacobi
dot_error
[.dot
[,dot-method
[,dot,ANY,ANY-method
[,dot,ANY,missing-method
[,dot,missing,ANY-method
[,dot,missing,missing-method
[,dot,free,ANY-method
[,dot,free,ANY,ANY-method
[,dot,matrix,matrix-method
- Class “dot”
-
free()
as.free()
is.free()
list_to_free()
- Objects of class
free
-
freegroup-package
freegroup
- The Free Group
-
getlet()
- Get letters of a freegroup object
-
is.id()
id()
- The identity element
-
keep()
discard()
- Keep or drop symbols
-
permsymb_single_X()
permsymb_single_f()
permsymb_vec()
permsymb()
autosub_lowlevel()
autosub()
- Outer automorphisms of the free group
-
is.primitive()
is.power()
- Primitive elements of the free algebra
-
print(<free>)
as.character_free()
- Print free objects
-
reduce()
is_reduced()
remove_zero_powers()
consolidate()
is_proper()
- Reduction of a word to reduced form
-
rfree()
rfreee()
rfreeee()
- Random free objects
-
shift()
- Permute elements of a vector in a cycle
-
size()
total()
number()
bigness()
- Bignesses of a free object
-
subsu()
subs()
flip()
- Substitute and invert symbols
-
sum(<free>)
- Repeated summation by concatenation
-
tietze(<free>)
tietze(<matrix>)
vec_to_matrix()
- Tietze form for free group objects