Derivations
derivation.Rd
A derivation \(D\) of an algebra \(A\) is a linear operator that satisfies \(D(d_1d_2)=d_1D(d_2)+D(d_1)d_2\), for every \(d_1,d_2\in A\). If a derivation is of the form \(D(d)=[d,f]=df-fd\) for some fixed \(f\in A\), we say that \(D\) is an inner derivation.
Function as.der()
returns a derivation with
as.der(f)(g)=fg-gf
.
Examples
(o <- rweyl(n=2,d=2))
#> A member of the Weyl algebra:
#> x y dx dy val
#> 2 0 2 2 = 2
#> 0 2 1 2 = 1
(f <- as.der(o))
#> function (x)
#> {
#> S * x - x * S
#> }
#> <bytecode: 0x5647be3d4d00>
#> <environment: 0x5647be3d4910>
d1 <-rweyl(n=1,d=2)
d2 <-rweyl(n=2,d=2)
f(d1*d2) == d1*f(d2) + f(d1)*d2 # should be TRUE
#> [1] TRUE