Binds arrays corner-to-corner
adiag.Rd
Array generalization of blockdiag()
Usage
adiag(... , pad=as.integer(0), do.dimnames=TRUE)
Details
Binds any number of arrays together, corner-to-corner. Because the
function is associative provided pad
is of length 1, this page
discusses the two array case.
Suppose x <- adiag(a,b)
and dim(a)=c(a_1,...,a_d)
,
dim(b)=c(b_1,...,b_d)
. Then we have
all(dim(x)==dim(a)+dim(b))
; and x[1:a_1,...,1:a_d]==a
and
x[(a_1+1):(a_1+b_1),...,(a_d+1):(a_d+b_d)]==b
.
Dimnames are preserved, if both arrays have non-null dimnames, and
do.dimnames
is TRUE
.
Argument pad
is usually a length-one vector, but any vector is
acceptable; standard recycling is used. Be aware that the output array
(of dimension dim(a)+dim(b)
) is filled with (copies of)
pad
before a
and b
are copied. This can be
confusing.
Note
In adiag(a,b)
, if a
is a length-one vector, it is coerced
to an array of dimensions rep(1,length(dim(b)))
; likewise
b
. If both a
and b
are length-one vectors, return
diag(c(a,b))
.
If a
and b
are arrays, function adiag()
requires
length(dim(a))==length(dim(b))
(the function does not guess which
dimensions have been dropped; see examples section). In particular,
note that vectors are not coerced except if of length one.
adiag()
is used when padding magic hypercubes in the context
of evaluating subarray sums.
Examples
a <- array( 1,c(2,2))
b <- array(-1,c(2,2))
adiag(a,b)
#> [,1] [,2] [,3] [,4]
#> [1,] 1 1 0 0
#> [2,] 1 1 0 0
#> [3,] 0 0 -1 -1
#> [4,] 0 0 -1 -1
## dropped dimensions can count:
b2 <- b1 <- b
dim(a) <- c(2,1,2)
dim(b1) <- c(2,2,1)
dim(b2) <- c(1,2,2)
dim(adiag(a,b1))
#> [1] 4 3 3
dim(adiag(a,b2))
#> [1] 3 3 4
## dimnames are preserved if not null:
a <- matrix(1,2,2,dimnames=list(col=c("red","blue"),size=c("big","small")))
b <- 8
dim(b) <- c(1,1)
dimnames(b) <- list(col=c("green"),size=c("tiny"))
adiag(a,b) #dimnames preserved
#> size
#> col big small tiny
#> red 1 1 0
#> blue 1 1 0
#> green 0 0 8
adiag(a,8) #dimnames lost because second argument has none.
#> [,1] [,2] [,3]
#> [1,] 1 1 0
#> [2,] 1 1 0
#> [3,] 0 0 8
## non scalar values for pad can be confusing:
q <- matrix(0,3,3)
adiag(q,q,pad=1:4)
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 0 0 0 3 1 3
#> [2,] 0 0 0 4 2 4
#> [3,] 0 0 0 1 3 1
#> [4,] 4 2 4 0 0 0
#> [5,] 1 3 1 0 0 0
#> [6,] 2 4 2 0 0 0
## following example should make the pattern clear:
adiag(q,q,pad=1:36)
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 0 0 0 19 25 31
#> [2,] 0 0 0 20 26 32
#> [3,] 0 0 0 21 27 33
#> [4,] 4 10 16 0 0 0
#> [5,] 5 11 17 0 0 0
#> [6,] 6 12 18 0 0 0
# Now, a use for arrays with dimensions of zero extent:
z <- array(dim=c(0,3))
colnames(z) <- c("foo","bar","baz")
adiag(a,z) # Observe how this has
#> size
#> col big small foo bar baz
#> red 1 1 0 0 0
#> blue 1 1 0 0 0
# added no (ie zero) rows to "a" but
# three extra columns filled with the pad value
adiag(a,t(z))
#> size
#> col big small
#> red 1 1
#> blue 1 1
#> foo 0 0
#> bar 0 0
#> baz 0 0
adiag(z,t(z)) # just the pad value
#> foo bar baz
#> foo 0 0 0
#> bar 0 0 0
#> baz 0 0 0