Glubbdubdribian numbers: complex numbers with Brobdingnagian real and imaginary parts
glub.Rd
Create, coerce to or test for a Glubbdubdribian object
Details
A Glubbdubdribian number is the Brobdingnagian equivalent of a complex number.
Function glub()
takes two arguments that are coerced to
Brobdingnagian numbers and returns a Glubbdubdribian number. This
function is not really intended for the end user: it is confusing and
includes no argument checking. Use function as.glub()
instead.
Function as.glub()
is the user's workhorse: use this to coerce
numeric or complex vectors to Glubbdubdribian form.
Function is.glub()
tests for its arguments being Glubbdubdribian.
Note
Function glub()
uses recycling inherited from cbind()
.
Examples
a <- as.glub(1:10 + 5i)
a^2 - a*a
#> [1] +exp(-32.172)-exp(-31.662)i +exp(-Inf)-exp(-Inf)i
#> [3] +exp(-32.578)-exp(-Inf)i +exp(-31.767)+exp(-31.662)i
#> [5] +exp(-33.42)-exp(-31.438)i +exp(-32.259)-exp(-Inf)i
#> [7] -exp(-Inf)-exp(-Inf)i +exp(-31.687)-exp(-Inf)i
#> [9] +exp(-30.632)+exp(-30.158)i -exp(-30.34)-exp(-30.052)i
f <- function(x){sin(x) +x^4 - 1/x}
as.complex(f(a)) - f(as.complex(a)) # should be zero (in the first
#> [1] 1.136868e-13+1.705303e-13i -8.526513e-14-7.958079e-13i
#> [3] -6.821210e-13-1.364242e-12i 2.046363e-12+2.046363e-12i
#> [5] -4.547474e-13+3.090861e-13i 2.728484e-12-1.591616e-12i
#> [7] 1.182343e-11-7.275958e-12i -9.094947e-12+1.455192e-11i
#> [9] 9.094947e-13+1.818989e-12i -8.185452e-12-1.455192e-11i
# term, f() works with glubs and coerces to
# complex; in the second, f()
# works with complex numbers directly)